Simple basis coordinates | Epsilon coordinates | Reflection w.r.t. root |
(-1, -2, -2, -3, -2, -1) | 1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{2}s_{4}s_{3}s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}s_{5}s_{4}s_{2}\) |
(-1, -1, -2, -3, -2, -1) | -1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{4}s_{3}s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}s_{5}s_{4}\) |
(-1, -1, -2, -2, -2, -1) | -1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{3}s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}s_{5}\) |
(-1, -1, -1, -2, -2, -1) | 1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{5}\) |
(-1, -1, -2, -2, -1, -1) | -1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{3}s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}\) |
(0, -1, -1, -2, -2, -1) | e_{4}+e_{5} | \(s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}\) |
(-1, -1, -1, -2, -1, -1) | 1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}\) |
(-1, -1, -2, -2, -1, 0) | -1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{3}s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}\) |
(0, -1, -1, -2, -1, -1) | e_{3}+e_{5} | \(s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{4}\) |
(-1, -1, -1, -1, -1, -1) | 1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}\) |
(-1, -1, -1, -2, -1, 0) | 1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}\) |
(0, -1, -1, -1, -1, -1) | e_{2}+e_{5} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}\) |
(-1, 0, -1, -1, -1, -1) | -1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{1}\) |
(0, -1, -1, -2, -1, 0) | e_{3}+e_{4} | \(s_{4}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{4}\) |
(-1, -1, -1, -1, -1, 0) | 1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{1}\) |
(0, 0, -1, -1, -1, -1) | -e_{1}+e_{5} | \(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\) |
(0, -1, 0, -1, -1, -1) | e_{1}+e_{5} | \(s_{2}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}\) |
(0, -1, -1, -1, -1, 0) | e_{2}+e_{4} | \(s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}\) |
(-1, 0, -1, -1, -1, 0) | -1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{3}s_{4}s_{5}s_{4}s_{3}s_{1}\) |
(-1, -1, -1, -1, 0, 0) | 1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{2}s_{3}s_{1}\) |
(0, 0, 0, -1, -1, -1) | -e_{2}+e_{5} | \(s_{4}s_{5}s_{6}s_{5}s_{4}\) |
(0, 0, -1, -1, -1, 0) | -e_{1}+e_{4} | \(s_{3}s_{4}s_{5}s_{4}s_{3}\) |
(0, -1, 0, -1, -1, 0) | e_{1}+e_{4} | \(s_{2}s_{4}s_{5}s_{4}s_{2}\) |
(0, -1, -1, -1, 0, 0) | e_{2}+e_{3} | \(s_{2}s_{3}s_{4}s_{2}s_{3}\) |
(-1, 0, -1, -1, 0, 0) | -1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{3}s_{4}s_{3}s_{1}\) |
(0, 0, 0, 0, -1, -1) | -e_{3}+e_{5} | \(s_{5}s_{6}s_{5}\) |
(0, 0, 0, -1, -1, 0) | -e_{2}+e_{4} | \(s_{4}s_{5}s_{4}\) |
(0, 0, -1, -1, 0, 0) | -e_{1}+e_{3} | \(s_{3}s_{4}s_{3}\) |
(0, -1, 0, -1, 0, 0) | e_{1}+e_{3} | \(s_{2}s_{4}s_{2}\) |
(-1, 0, -1, 0, 0, 0) | -1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}s_{3}s_{1}\) |
(0, 0, 0, 0, 0, -1) | -e_{4}+e_{5} | \(s_{6}\) |
(0, 0, 0, 0, -1, 0) | -e_{3}+e_{4} | \(s_{5}\) |
(0, 0, 0, -1, 0, 0) | -e_{2}+e_{3} | \(s_{4}\) |
(0, 0, -1, 0, 0, 0) | -e_{1}+e_{2} | \(s_{3}\) |
(0, -1, 0, 0, 0, 0) | e_{1}+e_{2} | \(s_{2}\) |
(-1, 0, 0, 0, 0, 0) | 1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | \(s_{1}\) |
(1, 0, 0, 0, 0, 0) | -1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}\) |
(0, 1, 0, 0, 0, 0) | -e_{1}-e_{2} | \(s_{2}\) |
(0, 0, 1, 0, 0, 0) | e_{1}-e_{2} | \(s_{3}\) |
(0, 0, 0, 1, 0, 0) | e_{2}-e_{3} | \(s_{4}\) |
(0, 0, 0, 0, 1, 0) | e_{3}-e_{4} | \(s_{5}\) |
(0, 0, 0, 0, 0, 1) | e_{4}-e_{5} | \(s_{6}\) |
(1, 0, 1, 0, 0, 0) | 1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{3}s_{1}\) |
(0, 1, 0, 1, 0, 0) | -e_{1}-e_{3} | \(s_{2}s_{4}s_{2}\) |
(0, 0, 1, 1, 0, 0) | e_{1}-e_{3} | \(s_{3}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 0) | e_{2}-e_{4} | \(s_{4}s_{5}s_{4}\) |
(0, 0, 0, 0, 1, 1) | e_{3}-e_{5} | \(s_{5}s_{6}s_{5}\) |
(1, 0, 1, 1, 0, 0) | 1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{3}s_{4}s_{3}s_{1}\) |
(0, 1, 1, 1, 0, 0) | -e_{2}-e_{3} | \(s_{2}s_{3}s_{4}s_{2}s_{3}\) |
(0, 1, 0, 1, 1, 0) | -e_{1}-e_{4} | \(s_{2}s_{4}s_{5}s_{4}s_{2}\) |
(0, 0, 1, 1, 1, 0) | e_{1}-e_{4} | \(s_{3}s_{4}s_{5}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 1) | e_{2}-e_{5} | \(s_{4}s_{5}s_{6}s_{5}s_{4}\) |
(1, 1, 1, 1, 0, 0) | -1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{2}s_{3}s_{1}\) |
(1, 0, 1, 1, 1, 0) | 1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{3}s_{4}s_{5}s_{4}s_{3}s_{1}\) |
(0, 1, 1, 1, 1, 0) | -e_{2}-e_{4} | \(s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}\) |
(0, 1, 0, 1, 1, 1) | -e_{1}-e_{5} | \(s_{2}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}\) |
(0, 0, 1, 1, 1, 1) | e_{1}-e_{5} | \(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\) |
(1, 1, 1, 1, 1, 0) | -1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{1}\) |
(0, 1, 1, 2, 1, 0) | -e_{3}-e_{4} | \(s_{4}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{4}\) |
(1, 0, 1, 1, 1, 1) | 1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{1}\) |
(0, 1, 1, 1, 1, 1) | -e_{2}-e_{5} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}\) |
(1, 1, 1, 2, 1, 0) | -1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}\) |
(1, 1, 1, 1, 1, 1) | -1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}\) |
(0, 1, 1, 2, 1, 1) | -e_{3}-e_{5} | \(s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{4}\) |
(1, 1, 2, 2, 1, 0) | 1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{3}s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}\) |
(1, 1, 1, 2, 1, 1) | -1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}\) |
(0, 1, 1, 2, 2, 1) | -e_{4}-e_{5} | \(s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}\) |
(1, 1, 2, 2, 1, 1) | 1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{3}s_{1}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}\) |
(1, 1, 1, 2, 2, 1) | -1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{5}\) |
(1, 1, 2, 2, 2, 1) | 1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{3}s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}s_{5}\) |
(1, 1, 2, 3, 2, 1) | 1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{4}s_{3}s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}s_{5}s_{4}\) |
(1, 2, 2, 3, 2, 1) | -1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | \(s_{2}s_{4}s_{3}s_{1}s_{5}s_{4}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{2}s_{3}s_{1}s_{4}s_{3}s_{5}s_{4}s_{2}\) |
Comma delimited list of roots: (-1, -2, -2, -3, -2, -1), (-1, -1, -2, -3, -2, -1), (-1, -1, -2, -2, -2, -1), (-1, -1, -1, -2, -2, -1), (-1, -1, -2, -2, -1, -1), (0, -1, -1, -2, -2, -1), (-1, -1, -1, -2, -1, -1), (-1, -1, -2, -2, -1, 0), (0, -1, -1, -2, -1, -1), (-1, -1, -1, -1, -1, -1), (-1, -1, -1, -2, -1, 0), (0, -1, -1, -1, -1, -1), (-1, 0, -1, -1, -1, -1), (0, -1, -1, -2, -1, 0), (-1, -1, -1, -1, -1, 0), (0, 0, -1, -1, -1, -1), (0, -1, 0, -1, -1, -1), (0, -1, -1, -1, -1, 0), (-1, 0, -1, -1, -1, 0), (-1, -1, -1, -1, 0, 0), (0, 0, 0, -1, -1, -1), (0, 0, -1, -1, -1, 0), (0, -1, 0, -1, -1, 0), (0, -1, -1, -1, 0, 0), (-1, 0, -1, -1, 0, 0), (0, 0, 0, 0, -1, -1), (0, 0, 0, -1, -1, 0), (0, 0, -1, -1, 0, 0), (0, -1, 0, -1, 0, 0), (-1, 0, -1, 0, 0, 0), (0, 0, 0, 0, 0, -1), (0, 0, 0, 0, -1, 0), (0, 0, 0, -1, 0, 0), (0, 0, -1, 0, 0, 0), (0, -1, 0, 0, 0, 0), (-1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1), (1, 0, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 1), (1, 0, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 0), (0, 0, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1), (1, 1, 1, 1, 0, 0), (1, 0, 1, 1, 1, 0), (0, 1, 1, 1, 1, 0), (0, 1, 0, 1, 1, 1), (0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 1, 0), (0, 1, 1, 2, 1, 0), (1, 0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1), (1, 1, 1, 2, 1, 0), (1, 1, 1, 1, 1, 1), (0, 1, 1, 2, 1, 1), (1, 1, 2, 2, 1, 0), (1, 1, 1, 2, 1, 1), (0, 1, 1, 2, 2, 1), (1, 1, 2, 2, 1, 1), (1, 1, 1, 2, 2, 1), (1, 1, 2, 2, 2, 1), (1, 1, 2, 3, 2, 1), (1, 2, 2, 3, 2, 1) The resulting Lie bracket pairing table follows. roots simple coords | epsilon coordinates | [,] | g_{-36} | g_{-35} | g_{-34} | g_{-33} | g_{-32} | g_{-31} | g_{-30} | g_{-29} | g_{-28} | g_{-27} | g_{-26} | g_{-25} | g_{-24} | g_{-23} | g_{-22} | g_{-21} | g_{-20} | g_{-19} | g_{-18} | g_{-17} | g_{-16} | g_{-15} | g_{-14} | g_{-13} | g_{-12} | g_{-11} | g_{-10} | g_{-9} | g_{-8} | g_{-7} | g_{-6} | g_{-5} | g_{-4} | g_{-3} | g_{-2} | g_{-1} | h_{1} | h_{2} | h_{3} | h_{4} | h_{5} | h_{6} | g_{1} | g_{2} | g_{3} | g_{4} | g_{5} | g_{6} | g_{7} | g_{8} | g_{9} | g_{10} | g_{11} | g_{12} | g_{13} | g_{14} | g_{15} | g_{16} | g_{17} | g_{18} | g_{19} | g_{20} | g_{21} | g_{22} | g_{23} | g_{24} | g_{25} | g_{26} | g_{27} | g_{28} | g_{29} | g_{30} | g_{31} | g_{32} | g_{33} | g_{34} | g_{35} | g_{36} |
(-1, -2, -2, -3, -2, -1) | 1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | -g_{-33} | g_{-32} | 0 | 0 | g_{-31} | 0 | -g_{-30} | -g_{-29} | 0 | g_{-28} | g_{-27} | 0 | g_{-26} | -g_{-25} | -g_{-23} | -g_{-22} | g_{-20} | g_{-19} | -g_{-17} | -g_{-14} | g_{-13} | -g_{-8} | -g_{-2} | -h_{6}-2h_{5}-3h_{4}-2h_{3}-2h_{2}-h_{1} |
(-1, -1, -2, -3, -2, -1) | -1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | -g_{-35} | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | -g_{-33} | g_{-32} | 0 | g_{-31} | 0 | 0 | -g_{-30} | -g_{-29} | 0 | g_{-28} | 0 | 0 | g_{-26} | 0 | g_{-24} | -g_{-23} | 0 | -g_{-21} | 0 | -g_{-18} | g_{-16} | g_{-15} | -g_{-12} | -g_{-10} | g_{-9} | -g_{-4} | -h_{6}-2h_{5}-3h_{4}-2h_{3}-h_{2}-h_{1} | -g_{2} |
(-1, -1, -2, -2, -2, -1) | -1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | g_{-34} | -g_{-34} | g_{-34} | 0 | 0 | 0 | g_{-33} | 0 | g_{-32} | 0 | -g_{-31} | 0 | 0 | 0 | -g_{-29} | 0 | 0 | 0 | -g_{-27} | 0 | 0 | g_{-25} | g_{-24} | 0 | g_{-22} | -g_{-21} | 0 | -g_{-19} | -g_{-18} | 0 | g_{-15} | 0 | g_{-11} | 0 | g_{-7} | -g_{-5} | -g_{-3} | -h_{6}-2h_{5}-2h_{4}-2h_{3}-h_{2}-h_{1} | -g_{4} | -g_{8} |
(-1, -1, -1, -2, -2, -1) | 1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | g_{-33} | 0 | -g_{-33} | 0 | g_{-33} | 0 | g_{-31} | 0 | 0 | 0 | g_{-30} | 0 | 0 | 0 | 0 | -g_{-27} | -g_{-26} | 0 | 0 | g_{-24} | 0 | g_{-22} | 0 | g_{-20} | 0 | -g_{-18} | 0 | -g_{-16} | 0 | -g_{-14} | 0 | g_{-11} | g_{-10} | 0 | 0 | -g_{-5} | -g_{-1} | 0 | -h_{6}-2h_{5}-2h_{4}-h_{3}-h_{2}-h_{1} | -g_{3} | g_{9} | g_{13} |
(-1, -1, -2, -2, -1, -1) | -1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-32} | 0 | -g_{-32} | g_{-32} | 0 | 0 | g_{-30} | 0 | 0 | -g_{-29} | -g_{-28} | 0 | g_{-27} | 0 | 0 | -g_{-25} | -g_{-24} | 0 | 0 | 0 | g_{-21} | 0 | 0 | 0 | -g_{-17} | 0 | 0 | g_{-13} | g_{-12} | 0 | -g_{-9} | g_{-7} | g_{-6} | -g_{-3} | 0 | -h_{6}-h_{5}-2h_{4}-2h_{3}-h_{2}-h_{1} | 0 | -g_{5} | -g_{10} | -g_{14} |
(0, -1, -1, -2, -2, -1) | e_{4}+e_{5} | g_{-31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | 0 | g_{-33} | -g_{-31} | 0 | 0 | 0 | g_{-31} | 0 | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | 0 | 0 | -g_{-25} | -g_{-23} | 0 | 0 | g_{-21} | g_{-20} | g_{-19} | 0 | 0 | -g_{-16} | -g_{-15} | -g_{-14} | 0 | g_{-11} | 0 | g_{-10} | 0 | 0 | -g_{-5} | 0 | 0 | -h_{6}-2h_{5}-2h_{4}-h_{3}-h_{2} | 0 | -g_{1} | g_{7} | -g_{12} | -g_{17} |
(-1, -1, -1, -2, -1, -1) | 1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-30} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-33} | 0 | g_{-32} | 0 | 0 | g_{-30} | 0 | -g_{-30} | g_{-30} | -g_{-30} | g_{-30} | g_{-28} | 0 | 0 | g_{-27} | 0 | -g_{-26} | 0 | -g_{-24} | 0 | 0 | 0 | -g_{-20} | 0 | 0 | 0 | -g_{-17} | g_{-16} | 0 | 0 | g_{-12} | 0 | 0 | 0 | g_{-8} | 0 | g_{-6} | -g_{-4} | -g_{-1} | 0 | -h_{6}-h_{5}-2h_{4}-h_{3}-h_{2}-h_{1} | 0 | -g_{3} | -g_{5} | 0 | g_{15} | g_{19} |
(-1, -1, -2, -2, -1, 0) | -1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-29} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-29} | 0 | 0 | -g_{-29} | 0 | 0 | g_{-26} | 0 | 0 | 0 | -g_{-23} | 0 | g_{-22} | 0 | 0 | -g_{-19} | -g_{-18} | 0 | -g_{-17} | 0 | g_{-15} | g_{-13} | g_{-12} | 0 | 0 | -g_{-9} | g_{-7} | 0 | 0 | -g_{-3} | 0 | 0 | -h_{5}-2h_{4}-2h_{3}-h_{2}-h_{1} | 0 | 0 | g_{6} | 0 | g_{11} | g_{16} | g_{20} |
(0, -1, -1, -2, -1, -1) | e_{3}+e_{5} | g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | g_{-31} | 0 | 0 | 0 | g_{-30} | -g_{-28} | 0 | 0 | g_{-28} | -g_{-28} | g_{-28} | 0 | 0 | 0 | g_{-25} | 0 | -g_{-23} | 0 | -g_{-21} | -g_{-20} | 0 | 0 | 0 | g_{-16} | 0 | 0 | -g_{-13} | 0 | 0 | 0 | g_{-9} | g_{-8} | 0 | g_{-6} | 0 | -g_{-4} | 0 | 0 | -h_{6}-h_{5}-2h_{4}-h_{3}-h_{2} | 0 | -g_{1} | -g_{5} | g_{7} | 0 | 0 | -g_{18} | -g_{22} |
(-1, -1, -1, -1, -1, -1) | 1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | -g_{-33} | g_{-32} | 0 | 0 | 0 | 0 | g_{-30} | 0 | 0 | 0 | g_{-27} | g_{-27} | 0 | -g_{-27} | 0 | g_{-27} | g_{-25} | g_{-24} | 0 | 0 | 0 | -g_{-22} | g_{-20} | 0 | 0 | 0 | -g_{-17} | 0 | 0 | 0 | 0 | 0 | g_{-11} | 0 | 0 | -g_{-7} | 0 | g_{-6} | 0 | -g_{-2} | -g_{-1} | 0 | -h_{6}-h_{5}-h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | -g_{4} | 0 | -g_{9} | g_{10} | g_{15} | 0 | -g_{23} |
(-1, -1, -1, -2, -1, 0) | 1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | 0 | 0 | -g_{-30} | 0 | 0 | g_{-29} | 0 | 0 | g_{-26} | 0 | -g_{-26} | g_{-26} | 0 | -g_{-26} | g_{-23} | 0 | 0 | g_{-22} | 0 | 0 | 0 | -g_{-18} | 0 | -g_{-17} | 0 | -g_{-14} | 0 | g_{-12} | 0 | 0 | g_{-10} | g_{-8} | 0 | 0 | 0 | -g_{-4} | -g_{-1} | 0 | 0 | -h_{5}-2h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | -g_{3} | g_{6} | 0 | 0 | g_{11} | 0 | -g_{21} | -g_{25} |
(0, -1, -1, -1, -1, -1) | e_{2}+e_{5} | g_{-25} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | -g_{-31} | 0 | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | g_{-27} | -g_{-25} | g_{-25} | g_{-25} | -g_{-25} | 0 | g_{-25} | 0 | g_{-21} | g_{-20} | 0 | 0 | -g_{-19} | 0 | 0 | 0 | 0 | -g_{-13} | 0 | g_{-11} | 0 | 0 | 0 | 0 | 0 | g_{-6} | -g_{-3} | -g_{-2} | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3}-h_{2} | 0 | -g_{1} | -g_{4} | 0 | 0 | g_{10} | g_{12} | 0 | -g_{18} | 0 | g_{26} |
(-1, 0, -1, -1, -1, -1) | -1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-24} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | g_{-33} | -g_{-32} | 0 | 0 | 0 | 0 | -g_{-30} | 0 | 0 | 0 | 0 | 0 | g_{-27} | 0 | g_{-24} | -g_{-24} | 0 | 0 | 0 | g_{-24} | g_{-21} | 0 | 0 | 0 | 0 | -g_{-18} | g_{-16} | 0 | 0 | 0 | -g_{-12} | g_{-11} | 0 | 0 | 0 | -g_{-7} | 0 | g_{-6} | 0 | 0 | -g_{-1} | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3}-h_{1} | 0 | 0 | -g_{2} | 0 | 0 | g_{8} | 0 | g_{13} | -g_{14} | -g_{19} | -g_{23} | 0 |
(0, -1, -1, -2, -1, 0) | e_{3}+e_{4} | g_{-23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-31} | 0 | 0 | 0 | -g_{-29} | -g_{-28} | 0 | 0 | 0 | 0 | g_{-26} | -g_{-23} | 0 | 0 | g_{-23} | 0 | -g_{-23} | 0 | 0 | 0 | g_{-19} | 0 | 0 | 0 | -g_{-15} | -g_{-14} | -g_{-13} | 0 | 0 | g_{-10} | g_{-9} | g_{-8} | 0 | 0 | 0 | -g_{-4} | 0 | 0 | 0 | -h_{5}-2h_{4}-h_{3}-h_{2} | 0 | 0 | -g_{1} | 0 | g_{6} | g_{7} | 0 | g_{11} | 0 | 0 | 0 | g_{24} | g_{27} |
(-1, -1, -1, -1, -1, 0) | 1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | g_{-33} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-29} | 0 | 0 | -g_{-27} | 0 | g_{-26} | 0 | 0 | 0 | g_{-22} | g_{-22} | 0 | -g_{-22} | g_{-22} | -g_{-22} | g_{-19} | g_{-18} | 0 | 0 | -g_{-17} | 0 | g_{-14} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-7} | 0 | 0 | g_{-5} | -g_{-2} | -g_{-1} | 0 | 0 | -h_{5}-h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | 0 | -g_{4} | g_{6} | 0 | -g_{9} | 0 | 0 | 0 | -g_{16} | -g_{21} | 0 | g_{28} |
(0, 0, -1, -1, -1, -1) | -e_{1}+e_{5} | g_{-21} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | g_{-32} | 0 | 0 | g_{-31} | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | g_{-25} | g_{-24} | -g_{-21} | -g_{-21} | g_{-21} | 0 | 0 | g_{-21} | 0 | 0 | g_{-16} | 0 | 0 | -g_{-15} | 0 | 0 | g_{-11} | 0 | -g_{-9} | 0 | 0 | 0 | g_{-6} | -g_{-3} | 0 | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3} | 0 | 0 | -g_{1} | -g_{2} | 0 | 0 | g_{8} | 0 | 0 | -g_{14} | -g_{17} | 0 | g_{22} | g_{26} | 0 |
(0, -1, 0, -1, -1, -1) | e_{1}+e_{5} | g_{-20} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-33} | 0 | 0 | g_{-31} | 0 | 0 | -g_{-30} | 0 | 0 | -g_{-28} | 0 | g_{-27} | 0 | 0 | 0 | g_{-25} | 0 | 0 | 0 | g_{-20} | -g_{-20} | 0 | 0 | g_{-20} | 0 | g_{-16} | 0 | 0 | 0 | -g_{-14} | 0 | g_{-11} | 0 | 0 | -g_{-8} | 0 | 0 | g_{-6} | 0 | -g_{-2} | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{2} | 0 | 0 | 0 | 0 | -g_{3} | 0 | -g_{7} | g_{9} | 0 | g_{12} | -g_{15} | 0 | -g_{18} | 0 | 0 | -g_{29} |
(0, -1, -1, -1, -1, 0) | e_{2}+e_{4} | g_{-19} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-31} | 0 | 0 | 0 | -g_{-29} | 0 | 0 | 0 | 0 | 0 | -g_{-25} | 0 | g_{-23} | 0 | 0 | g_{-22} | -g_{-19} | g_{-19} | g_{-19} | -g_{-19} | g_{-19} | -g_{-19} | 0 | g_{-15} | g_{-14} | 0 | -g_{-13} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-5} | -g_{-3} | -g_{-2} | 0 | 0 | 0 | -h_{5}-h_{4}-h_{3}-h_{2} | 0 | 0 | -g_{1} | -g_{4} | 0 | g_{6} | 0 | 0 | 0 | g_{12} | 0 | -g_{16} | 0 | 0 | g_{24} | 0 | -g_{30} |
(-1, 0, -1, -1, -1, 0) | -1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-18} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-29} | 0 | 0 | 0 | 0 | -g_{-26} | 0 | -g_{-24} | 0 | 0 | 0 | g_{-22} | 0 | g_{-18} | -g_{-18} | 0 | 0 | g_{-18} | -g_{-18} | g_{-15} | 0 | 0 | 0 | -g_{-12} | 0 | g_{-10} | 0 | 0 | -g_{-7} | 0 | g_{-5} | 0 | 0 | -g_{-1} | 0 | 0 | -h_{5}-h_{4}-h_{3}-h_{1} | 0 | 0 | 0 | -g_{2} | 0 | g_{6} | 0 | g_{8} | 0 | 0 | g_{13} | 0 | 0 | 0 | g_{20} | g_{25} | g_{28} | 0 |
(-1, -1, -1, -1, 0, 0) | 1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-17} | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | -g_{-30} | -g_{-29} | 0 | 0 | 0 | -g_{-27} | -g_{-26} | 0 | 0 | 0 | 0 | -g_{-22} | 0 | 0 | 0 | 0 | g_{-17} | g_{-17} | 0 | 0 | -g_{-17} | 0 | g_{-13} | g_{-12} | 0 | 0 | 0 | 0 | g_{-8} | -g_{-7} | 0 | 0 | 0 | -g_{-2} | -g_{-1} | 0 | 0 | 0 | -h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | 0 | 0 | g_{5} | 0 | 0 | 0 | g_{10} | g_{11} | 0 | g_{15} | g_{16} | 0 | g_{21} | 0 | 0 | 0 | g_{31} |
(0, 0, 0, -1, -1, -1) | -e_{2}+e_{5} | g_{-16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | -g_{-31} | 0 | g_{-30} | 0 | 0 | 0 | g_{-28} | 0 | 0 | 0 | 0 | 0 | g_{-24} | 0 | 0 | 0 | g_{-21} | g_{-20} | 0 | 0 | -g_{-16} | -g_{-16} | g_{-16} | 0 | g_{-16} | 0 | 0 | 0 | g_{-11} | 0 | -g_{-10} | 0 | 0 | 0 | g_{-6} | -g_{-4} | 0 | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4} | 0 | 0 | 0 | -g_{2} | -g_{3} | 0 | 0 | -g_{7} | 0 | 0 | 0 | -g_{13} | 0 | -g_{17} | g_{19} | 0 | g_{22} | 0 | -g_{29} | 0 |
(0, 0, -1, -1, -1, 0) | -e_{1}+e_{4} | g_{-15} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-31} | 0 | 0 | g_{-29} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-23} | 0 | -g_{-21} | 0 | 0 | 0 | g_{-19} | g_{-18} | -g_{-15} | -g_{-15} | g_{-15} | 0 | g_{-15} | -g_{-15} | 0 | 0 | g_{-10} | 0 | -g_{-9} | 0 | 0 | 0 | g_{-5} | -g_{-3} | 0 | 0 | 0 | 0 | -h_{5}-h_{4}-h_{3} | 0 | 0 | -g_{1} | -g_{2} | 0 | g_{6} | 0 | g_{8} | 0 | 0 | 0 | 0 | 0 | -g_{17} | 0 | g_{20} | 0 | 0 | -g_{27} | -g_{30} | 0 |
(0, -1, 0, -1, -1, 0) | e_{1}+e_{4} | g_{-14} | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | -g_{-31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-26} | 0 | 0 | -g_{-23} | 0 | g_{-22} | -g_{-20} | 0 | 0 | g_{-19} | 0 | 0 | 0 | g_{-14} | -g_{-14} | 0 | g_{-14} | -g_{-14} | 0 | g_{-10} | 0 | 0 | -g_{-8} | 0 | 0 | g_{-5} | 0 | -g_{-2} | 0 | 0 | 0 | -h_{5}-h_{4}-h_{2} | 0 | 0 | 0 | 0 | -g_{3} | g_{6} | 0 | -g_{7} | g_{9} | 0 | 0 | g_{12} | 0 | 0 | 0 | 0 | g_{21} | 0 | g_{24} | 0 | 0 | g_{32} |
(0, -1, -1, -1, 0, 0) | e_{2}+e_{3} | g_{-13} | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-32} | 0 | 0 | 0 | 0 | 0 | g_{-29} | 0 | -g_{-28} | 0 | 0 | 0 | 0 | -g_{-25} | -g_{-23} | 0 | 0 | 0 | 0 | -g_{-19} | 0 | 0 | 0 | g_{-17} | -g_{-13} | g_{-13} | g_{-13} | 0 | -g_{-13} | 0 | 0 | g_{-9} | g_{-8} | 0 | 0 | 0 | 0 | -g_{-3} | -g_{-2} | 0 | 0 | 0 | -h_{4}-h_{3}-h_{2} | 0 | 0 | 0 | -g_{1} | 0 | g_{5} | 0 | 0 | 0 | g_{10} | 0 | g_{11} | 0 | 0 | g_{16} | -g_{18} | 0 | 0 | -g_{24} | 0 | 0 | 0 | -g_{33} |
(-1, 0, -1, -1, 0, 0) | -1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-12} | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | g_{-32} | 0 | 0 | 0 | 0 | g_{-30} | g_{-29} | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | -g_{-24} | 0 | 0 | 0 | 0 | 0 | -g_{-18} | 0 | 0 | g_{-17} | 0 | g_{-12} | -g_{-12} | 0 | g_{-12} | -g_{-12} | 0 | g_{-9} | 0 | 0 | -g_{-7} | 0 | 0 | g_{-4} | 0 | -g_{-1} | 0 | 0 | -h_{4}-h_{3}-h_{1} | 0 | 0 | 0 | 0 | -g_{2} | g_{5} | 0 | 0 | 0 | 0 | 0 | g_{11} | 0 | -g_{14} | 0 | 0 | -g_{19} | -g_{20} | 0 | -g_{25} | 0 | 0 | g_{31} | 0 |
(0, 0, 0, 0, -1, -1) | -e_{3}+e_{5} | g_{-11} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | g_{-33} | 0 | 0 | g_{-31} | 0 | 0 | 0 | 0 | 0 | g_{-27} | 0 | 0 | 0 | g_{-25} | g_{-24} | 0 | 0 | g_{-21} | g_{-20} | 0 | 0 | 0 | g_{-16} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-11} | g_{-11} | g_{-11} | 0 | 0 | 0 | 0 | g_{-6} | -g_{-5} | 0 | 0 | 0 | 0 | -h_{6}-h_{5} | 0 | 0 | 0 | 0 | -g_{4} | 0 | 0 | 0 | -g_{8} | -g_{9} | 0 | 0 | -g_{12} | -g_{13} | 0 | -g_{17} | 0 | 0 | 0 | -g_{23} | 0 | -g_{26} | -g_{29} | 0 | 0 |
(0, 0, 0, -1, -1, 0) | -e_{2}+e_{4} | g_{-10} | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | g_{-33} | 0 | g_{-31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | g_{-23} | 0 | 0 | 0 | 0 | 0 | g_{-18} | -g_{-16} | 0 | 0 | g_{-15} | g_{-14} | 0 | 0 | -g_{-10} | -g_{-10} | g_{-10} | g_{-10} | -g_{-10} | 0 | 0 | 0 | g_{-5} | -g_{-4} | 0 | 0 | 0 | 0 | -h_{5}-h_{4} | 0 | 0 | 0 | -g_{2} | -g_{3} | g_{6} | 0 | -g_{7} | 0 | 0 | 0 | 0 | -g_{13} | 0 | 0 | -g_{17} | 0 | 0 | 0 | 0 | -g_{25} | 0 | -g_{27} | 0 | g_{32} | 0 |
(0, 0, -1, -1, 0, 0) | -e_{1}+e_{3} | g_{-9} | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | -g_{-29} | 0 | g_{-28} | 0 | 0 | 0 | 0 | 0 | g_{-23} | 0 | 0 | -g_{-21} | 0 | 0 | 0 | 0 | 0 | -g_{-15} | 0 | 0 | g_{-13} | g_{-12} | -g_{-9} | -g_{-9} | g_{-9} | g_{-9} | -g_{-9} | 0 | 0 | 0 | g_{-4} | -g_{-3} | 0 | 0 | 0 | 0 | -h_{4}-h_{3} | 0 | 0 | -g_{1} | -g_{2} | 0 | g_{5} | 0 | 0 | 0 | 0 | 0 | g_{11} | 0 | -g_{14} | 0 | 0 | 0 | 0 | -g_{20} | g_{22} | 0 | 0 | g_{27} | 0 | 0 | -g_{33} | 0 |
(0, -1, 0, -1, 0, 0) | e_{1}+e_{3} | g_{-8} | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-30} | 0 | 0 | g_{-28} | 0 | 0 | g_{-26} | 0 | 0 | g_{-23} | 0 | 0 | 0 | -g_{-20} | 0 | 0 | 0 | g_{-17} | 0 | -g_{-14} | 0 | g_{-13} | 0 | 0 | 0 | g_{-8} | -g_{-8} | g_{-8} | -g_{-8} | 0 | 0 | g_{-4} | 0 | -g_{-2} | 0 | 0 | 0 | -h_{4}-h_{2} | 0 | 0 | 0 | 0 | -g_{3} | g_{5} | 0 | 0 | -g_{7} | 0 | 0 | g_{11} | 0 | 0 | -g_{15} | 0 | 0 | -g_{18} | 0 | -g_{21} | 0 | -g_{24} | 0 | 0 | 0 | 0 | 0 | g_{34} |
(-1, 0, -1, 0, 0, 0) | -1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-7} | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | g_{-32} | 0 | 0 | 0 | 0 | g_{-29} | 0 | 0 | -g_{-27} | 0 | 0 | 0 | -g_{-24} | 0 | -g_{-22} | 0 | 0 | 0 | -g_{-18} | 0 | -g_{-17} | 0 | 0 | 0 | -g_{-12} | 0 | 0 | 0 | g_{-7} | 0 | g_{-7} | -g_{-7} | 0 | 0 | g_{-3} | 0 | -g_{-1} | 0 | 0 | 0 | -h_{3}-h_{1} | 0 | 0 | 0 | 0 | g_{4} | 0 | 0 | 0 | 0 | g_{8} | g_{10} | 0 | 0 | 0 | g_{14} | 0 | g_{16} | 0 | 0 | g_{20} | 0 | -g_{23} | 0 | 0 | -g_{28} | 0 | -g_{31} | 0 | 0 |
(0, 0, 0, 0, 0, -1) | -e_{4}+e_{5} | g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-32} | 0 | 0 | g_{-30} | 0 | 0 | g_{-28} | g_{-27} | 0 | 0 | g_{-25} | g_{-24} | 0 | 0 | g_{-21} | g_{-20} | 0 | 0 | 0 | g_{-16} | 0 | 0 | 0 | 0 | g_{-11} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-6} | 2g_{-6} | 0 | 0 | 0 | 0 | 0 | -h_{6} | 0 | 0 | 0 | 0 | -g_{5} | 0 | 0 | 0 | 0 | -g_{10} | 0 | 0 | 0 | -g_{14} | -g_{15} | 0 | 0 | -g_{18} | -g_{19} | 0 | -g_{22} | -g_{23} | 0 | -g_{26} | 0 | -g_{29} | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, -1, 0) | -e_{3}+e_{4} | g_{-5} | 0 | 0 | 0 | 0 | -g_{-34} | 0 | -g_{-33} | 0 | -g_{-31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-22} | 0 | 0 | 0 | g_{-19} | g_{-18} | 0 | 0 | g_{-15} | g_{-14} | 0 | -g_{-11} | 0 | g_{-10} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-5} | 2g_{-5} | -g_{-5} | 0 | 0 | 0 | 0 | -h_{5} | 0 | 0 | 0 | 0 | -g_{4} | g_{6} | 0 | 0 | -g_{8} | -g_{9} | 0 | 0 | -g_{12} | -g_{13} | 0 | 0 | -g_{17} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | g_{30} | g_{32} | 0 | 0 |
(0, 0, 0, -1, 0, 0) | -e_{2}+e_{3} | g_{-4} | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-30} | 0 | -g_{-28} | 0 | 0 | -g_{-26} | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-16} | 0 | 0 | 0 | g_{-12} | 0 | -g_{-10} | 0 | g_{-9} | g_{-8} | 0 | 0 | -g_{-4} | -g_{-4} | 2g_{-4} | -g_{-4} | 0 | 0 | 0 | 0 | -h_{4} | 0 | 0 | 0 | -g_{2} | -g_{3} | g_{5} | 0 | -g_{7} | 0 | 0 | 0 | g_{11} | 0 | 0 | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | g_{22} | 0 | g_{25} | 0 | g_{27} | 0 | 0 | 0 | 0 | g_{34} | 0 |
(0, 0, -1, 0, 0, 0) | -e_{1}+e_{2} | g_{-3} | 0 | 0 | 0 | -g_{-34} | 0 | 0 | -g_{-32} | 0 | 0 | 0 | -g_{-29} | 0 | 0 | 0 | 0 | 0 | -g_{-25} | 0 | 0 | 0 | -g_{-21} | 0 | -g_{-19} | 0 | 0 | 0 | -g_{-15} | 0 | -g_{-13} | 0 | 0 | 0 | -g_{-9} | 0 | 0 | g_{-7} | -g_{-3} | 0 | 2g_{-3} | -g_{-3} | 0 | 0 | 0 | 0 | -h_{3} | 0 | 0 | 0 | -g_{1} | 0 | g_{4} | 0 | 0 | 0 | g_{8} | 0 | g_{10} | 0 | 0 | 0 | g_{14} | 0 | g_{16} | 0 | 0 | 0 | g_{20} | 0 | 0 | 0 | g_{26} | 0 | 0 | g_{30} | 0 | g_{33} | 0 | 0 |
(0, -1, 0, 0, 0, 0) | e_{1}+e_{2} | g_{-2} | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | -g_{-25} | 0 | 0 | -g_{-22} | 0 | -g_{-20} | -g_{-19} | 0 | 0 | -g_{-17} | 0 | -g_{-14} | -g_{-13} | 0 | 0 | 0 | 0 | -g_{-8} | 0 | 0 | 0 | 0 | 2g_{-2} | 0 | -g_{-2} | 0 | 0 | 0 | -h_{2} | 0 | 0 | 0 | 0 | 0 | g_{4} | 0 | 0 | 0 | 0 | g_{9} | g_{10} | 0 | 0 | g_{12} | 0 | g_{15} | g_{16} | 0 | g_{18} | 0 | 0 | g_{21} | 0 | g_{24} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{35} |
(-1, 0, 0, 0, 0, 0) | 1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}-1/2e_{6}-1/2e_{7}+1/2e_{8} | g_{-1} | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | -g_{-30} | 0 | 0 | -g_{-27} | 0 | -g_{-26} | 0 | -g_{-24} | 0 | -g_{-22} | 0 | 0 | 0 | -g_{-18} | 0 | -g_{-17} | 0 | 0 | 0 | -g_{-12} | 0 | 0 | 0 | 0 | 0 | -g_{-7} | 0 | 0 | 2g_{-1} | 0 | -g_{-1} | 0 | 0 | 0 | -h_{1} | 0 | 0 | 0 | 0 | 0 | g_{3} | 0 | 0 | 0 | 0 | g_{9} | 0 | 0 | 0 | 0 | g_{13} | g_{15} | 0 | 0 | 0 | g_{19} | 0 | g_{21} | 0 | g_{23} | g_{25} | 0 | 0 | g_{28} | 0 | 0 | g_{31} | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0) | 0 | h_{1} | 0 | 0 | 0 | -g_{-33} | 0 | g_{-31} | -g_{-30} | 0 | g_{-28} | -g_{-27} | -g_{-26} | g_{-25} | -g_{-24} | g_{-23} | -g_{-22} | g_{-21} | 0 | g_{-19} | -g_{-18} | -g_{-17} | 0 | g_{-15} | 0 | g_{-13} | -g_{-12} | 0 | 0 | g_{-9} | 0 | -g_{-7} | 0 | 0 | 0 | g_{-3} | 0 | -2g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | 2g_{1} | 0 | -g_{3} | 0 | 0 | 0 | g_{7} | 0 | -g_{9} | 0 | 0 | g_{12} | -g_{13} | 0 | -g_{15} | 0 | g_{17} | g_{18} | -g_{19} | 0 | -g_{21} | g_{22} | -g_{23} | g_{24} | -g_{25} | g_{26} | g_{27} | -g_{28} | 0 | g_{30} | -g_{31} | 0 | g_{33} | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0) | 0 | h_{2} | -g_{-36} | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | -g_{-25} | g_{-24} | 0 | -g_{-22} | g_{-21} | -g_{-20} | -g_{-19} | g_{-18} | -g_{-17} | g_{-16} | g_{-15} | -g_{-14} | -g_{-13} | g_{-12} | 0 | g_{-10} | g_{-9} | -g_{-8} | 0 | 0 | 0 | g_{-4} | 0 | -2g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2g_{2} | 0 | -g_{4} | 0 | 0 | 0 | g_{8} | -g_{9} | -g_{10} | 0 | -g_{12} | g_{13} | g_{14} | -g_{15} | -g_{16} | g_{17} | -g_{18} | g_{19} | g_{20} | -g_{21} | g_{22} | 0 | -g_{24} | g_{25} | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{35} | g_{36} |
(0, 0, 0, 0, 0, 0) | 0 | h_{3} | 0 | 0 | -g_{-34} | g_{-33} | -g_{-32} | 0 | g_{-30} | -g_{-29} | 0 | 0 | g_{-26} | -g_{-25} | 0 | 0 | 0 | -g_{-21} | g_{-20} | -g_{-19} | 0 | 0 | g_{-16} | -g_{-15} | g_{-14} | -g_{-13} | 0 | 0 | g_{-10} | -g_{-9} | g_{-8} | -g_{-7} | 0 | 0 | g_{-4} | -2g_{-3} | 0 | g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{1} | 0 | 2g_{3} | -g_{4} | 0 | 0 | g_{7} | -g_{8} | g_{9} | -g_{10} | 0 | 0 | g_{13} | -g_{14} | g_{15} | -g_{16} | 0 | 0 | g_{19} | -g_{20} | g_{21} | 0 | 0 | 0 | g_{25} | -g_{26} | 0 | 0 | g_{29} | -g_{30} | 0 | g_{32} | -g_{33} | g_{34} | 0 | 0 |
(0, 0, 0, 0, 0, 0) | 0 | h_{4} | 0 | -g_{-35} | g_{-34} | 0 | 0 | 0 | -g_{-30} | 0 | -g_{-28} | g_{-27} | -g_{-26} | g_{-25} | 0 | -g_{-23} | g_{-22} | 0 | 0 | g_{-19} | 0 | 0 | -g_{-16} | 0 | 0 | 0 | -g_{-12} | g_{-11} | -g_{-10} | -g_{-9} | -g_{-8} | g_{-7} | 0 | g_{-5} | -2g_{-4} | g_{-3} | g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{2} | -g_{3} | 2g_{4} | -g_{5} | 0 | -g_{7} | g_{8} | g_{9} | g_{10} | -g_{11} | g_{12} | 0 | 0 | 0 | g_{16} | 0 | 0 | -g_{19} | 0 | 0 | -g_{22} | g_{23} | 0 | -g_{25} | g_{26} | -g_{27} | g_{28} | 0 | g_{30} | 0 | 0 | 0 | -g_{34} | g_{35} | 0 |
(0, 0, 0, 0, 0, 0) | 0 | h_{5} | 0 | 0 | -g_{-34} | -g_{-33} | g_{-32} | -g_{-31} | g_{-30} | 0 | g_{-28} | 0 | 0 | 0 | 0 | 0 | -g_{-22} | 0 | 0 | -g_{-19} | -g_{-18} | g_{-17} | 0 | -g_{-15} | -g_{-14} | g_{-13} | g_{-12} | -g_{-11} | -g_{-10} | g_{-9} | g_{-8} | 0 | g_{-6} | -2g_{-5} | g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{4} | 2g_{5} | -g_{6} | 0 | -g_{8} | -g_{9} | g_{10} | g_{11} | -g_{12} | -g_{13} | g_{14} | g_{15} | 0 | -g_{17} | g_{18} | g_{19} | 0 | 0 | g_{22} | 0 | 0 | 0 | 0 | 0 | -g_{28} | 0 | -g_{30} | g_{31} | -g_{32} | g_{33} | g_{34} | 0 | 0 |
(0, 0, 0, 0, 0, 0) | 0 | h_{6} | 0 | 0 | 0 | 0 | -g_{-32} | 0 | -g_{-30} | g_{-29} | -g_{-28} | -g_{-27} | g_{-26} | -g_{-25} | -g_{-24} | g_{-23} | g_{-22} | -g_{-21} | -g_{-20} | g_{-19} | g_{-18} | 0 | -g_{-16} | g_{-15} | g_{-14} | 0 | 0 | -g_{-11} | g_{-10} | 0 | 0 | 0 | -2g_{-6} | g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{5} | 2g_{6} | 0 | 0 | 0 | -g_{10} | g_{11} | 0 | 0 | -g_{14} | -g_{15} | g_{16} | 0 | -g_{18} | -g_{19} | g_{20} | g_{21} | -g_{22} | -g_{23} | g_{24} | g_{25} | -g_{26} | g_{27} | g_{28} | -g_{29} | g_{30} | 0 | g_{32} | 0 | 0 | 0 | 0 |
(1, 0, 0, 0, 0, 0) | -1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{1} | 0 | 0 | 0 | -g_{-31} | 0 | 0 | -g_{-28} | 0 | 0 | -g_{-25} | -g_{-23} | 0 | -g_{-21} | 0 | -g_{-19} | 0 | 0 | 0 | -g_{-15} | -g_{-13} | 0 | 0 | 0 | 0 | -g_{-9} | 0 | 0 | 0 | 0 | -g_{-3} | 0 | 0 | 0 | 0 | 0 | h_{1} | -2g_{1} | 0 | g_{1} | 0 | 0 | 0 | 0 | 0 | g_{7} | 0 | 0 | 0 | 0 | 0 | g_{12} | 0 | 0 | 0 | g_{17} | 0 | g_{18} | 0 | 0 | 0 | g_{22} | 0 | g_{24} | 0 | g_{26} | 0 | g_{27} | 0 | 0 | g_{30} | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 |
(0, 1, 0, 0, 0, 0) | -e_{1}-e_{2} | g_{2} | -g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-24} | 0 | -g_{-21} | 0 | 0 | -g_{-18} | 0 | -g_{-16} | -g_{-15} | 0 | -g_{-12} | 0 | 0 | -g_{-10} | -g_{-9} | 0 | 0 | 0 | 0 | -g_{-4} | 0 | 0 | 0 | 0 | 0 | h_{2} | 0 | 0 | -2g_{2} | 0 | g_{2} | 0 | 0 | 0 | 0 | 0 | g_{8} | 0 | 0 | 0 | 0 | g_{13} | g_{14} | 0 | g_{17} | 0 | 0 | g_{19} | g_{20} | 0 | g_{22} | 0 | 0 | g_{25} | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 |
(0, 0, 1, 0, 0, 0) | e_{1}-e_{2} | g_{3} | 0 | 0 | -g_{-33} | 0 | -g_{-30} | 0 | 0 | -g_{-26} | 0 | 0 | 0 | -g_{-20} | 0 | 0 | 0 | -g_{-16} | 0 | -g_{-14} | 0 | 0 | 0 | -g_{-10} | 0 | -g_{-8} | 0 | 0 | 0 | -g_{-4} | 0 | g_{-1} | 0 | 0 | 0 | h_{3} | 0 | 0 | g_{3} | 0 | -2g_{3} | g_{3} | 0 | 0 | -g_{7} | 0 | 0 | g_{9} | 0 | 0 | 0 | g_{13} | 0 | g_{15} | 0 | 0 | 0 | g_{19} | 0 | g_{21} | 0 | 0 | 0 | g_{25} | 0 | 0 | 0 | 0 | 0 | g_{29} | 0 | 0 | 0 | g_{32} | 0 | 0 | g_{34} | 0 | 0 | 0 |
(0, 0, 0, 1, 0, 0) | e_{2}-e_{3} | g_{4} | 0 | -g_{-34} | 0 | 0 | 0 | 0 | -g_{-27} | 0 | -g_{-25} | 0 | -g_{-22} | 0 | 0 | -g_{-19} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-11} | 0 | 0 | 0 | g_{-7} | 0 | -g_{-5} | g_{-3} | g_{-2} | 0 | 0 | 0 | h_{4} | 0 | 0 | 0 | 0 | g_{4} | g_{4} | -2g_{4} | g_{4} | 0 | 0 | -g_{8} | -g_{9} | 0 | g_{10} | 0 | -g_{12} | 0 | 0 | 0 | g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | g_{26} | 0 | 0 | g_{28} | 0 | g_{30} | 0 | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 |
(0, 0, 0, 0, 1, 0) | e_{3}-e_{4} | g_{5} | 0 | 0 | -g_{-32} | -g_{-30} | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-17} | 0 | 0 | g_{-13} | g_{-12} | 0 | 0 | g_{-9} | g_{-8} | 0 | 0 | -g_{-6} | g_{-4} | 0 | 0 | 0 | 0 | h_{5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{5} | -2g_{5} | g_{5} | 0 | 0 | 0 | -g_{10} | 0 | g_{11} | 0 | -g_{14} | -g_{15} | 0 | 0 | -g_{18} | -g_{19} | 0 | 0 | 0 | -g_{22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{31} | 0 | g_{33} | 0 | g_{34} | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 1) | e_{4}-e_{5} | g_{6} | 0 | 0 | 0 | 0 | g_{-29} | 0 | g_{-26} | 0 | g_{-23} | g_{-22} | 0 | g_{-19} | g_{-18} | 0 | 0 | g_{-15} | g_{-14} | 0 | 0 | 0 | g_{-10} | 0 | 0 | 0 | 0 | g_{-5} | 0 | 0 | 0 | 0 | h_{6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{6} | -2g_{6} | 0 | 0 | 0 | 0 | -g_{11} | 0 | 0 | 0 | 0 | -g_{16} | 0 | 0 | 0 | -g_{20} | -g_{21} | 0 | 0 | -g_{24} | -g_{25} | 0 | 0 | -g_{27} | -g_{28} | 0 | 0 | -g_{30} | 0 | 0 | -g_{32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 0, 1, 0, 0, 0) | 1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{7} | 0 | 0 | g_{-31} | 0 | g_{-28} | 0 | 0 | g_{-23} | 0 | -g_{-20} | 0 | 0 | -g_{-16} | 0 | -g_{-14} | 0 | 0 | 0 | -g_{-10} | -g_{-8} | 0 | 0 | 0 | 0 | -g_{-4} | 0 | 0 | 0 | 0 | h_{3}+h_{1} | 0 | 0 | 0 | g_{1} | 0 | -g_{3} | -g_{7} | 0 | -g_{7} | g_{7} | 0 | 0 | 0 | 0 | 0 | g_{12} | 0 | 0 | 0 | g_{17} | 0 | g_{18} | 0 | 0 | 0 | g_{22} | 0 | g_{24} | 0 | 0 | 0 | g_{27} | 0 | 0 | -g_{29} | 0 | 0 | 0 | 0 | -g_{32} | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 |
(0, 1, 0, 1, 0, 0) | -e_{1}-e_{3} | g_{8} | -g_{-34} | 0 | 0 | 0 | 0 | 0 | g_{-24} | 0 | g_{-21} | 0 | g_{-18} | 0 | 0 | g_{-15} | 0 | 0 | -g_{-11} | 0 | 0 | g_{-7} | 0 | 0 | -g_{-5} | g_{-3} | 0 | 0 | 0 | 0 | h_{4}+h_{2} | 0 | 0 | 0 | g_{2} | 0 | -g_{4} | 0 | 0 | -g_{8} | g_{8} | -g_{8} | g_{8} | 0 | 0 | 0 | -g_{13} | 0 | g_{14} | 0 | -g_{17} | 0 | 0 | 0 | g_{20} | 0 | 0 | 0 | -g_{23} | 0 | 0 | -g_{26} | 0 | 0 | -g_{28} | 0 | 0 | -g_{30} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 |
(0, 0, 1, 1, 0, 0) | e_{1}-e_{3} | g_{9} | 0 | g_{-33} | 0 | 0 | -g_{-27} | 0 | 0 | -g_{-22} | g_{-20} | 0 | 0 | 0 | 0 | g_{-14} | 0 | -g_{-11} | 0 | 0 | 0 | 0 | 0 | -g_{-5} | 0 | g_{-2} | g_{-1} | 0 | 0 | h_{4}+h_{3} | 0 | 0 | 0 | 0 | g_{3} | -g_{4} | 0 | 0 | g_{9} | g_{9} | -g_{9} | -g_{9} | g_{9} | 0 | -g_{12} | -g_{13} | 0 | 0 | g_{15} | 0 | 0 | 0 | 0 | 0 | g_{21} | 0 | 0 | -g_{23} | 0 | 0 | 0 | 0 | 0 | -g_{28} | 0 | g_{29} | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 0) | e_{2}-e_{4} | g_{10} | 0 | -g_{-32} | 0 | g_{-27} | 0 | g_{-25} | 0 | 0 | 0 | 0 | g_{-17} | 0 | 0 | g_{-13} | 0 | 0 | 0 | 0 | g_{-7} | 0 | -g_{-6} | g_{-3} | g_{-2} | 0 | 0 | 0 | h_{5}+h_{4} | 0 | 0 | 0 | 0 | g_{4} | -g_{5} | 0 | 0 | 0 | 0 | g_{10} | g_{10} | -g_{10} | -g_{10} | g_{10} | 0 | -g_{14} | -g_{15} | 0 | 0 | g_{16} | -g_{18} | 0 | 0 | 0 | 0 | 0 | -g_{23} | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{31} | 0 | -g_{33} | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 1) | e_{3}-e_{5} | g_{11} | 0 | 0 | g_{-29} | g_{-26} | 0 | g_{-23} | 0 | 0 | 0 | g_{-17} | 0 | g_{-13} | g_{-12} | 0 | 0 | g_{-9} | g_{-8} | 0 | 0 | 0 | g_{-4} | 0 | 0 | 0 | 0 | h_{6}+h_{5} | 0 | 0 | 0 | 0 | g_{5} | -g_{6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{11} | -g_{11} | -g_{11} | 0 | 0 | 0 | -g_{16} | 0 | 0 | 0 | -g_{20} | -g_{21} | 0 | 0 | -g_{24} | -g_{25} | 0 | 0 | 0 | -g_{27} | 0 | 0 | 0 | 0 | 0 | -g_{31} | 0 | 0 | -g_{33} | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 0, 1, 1, 0, 0) | 1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{12} | 0 | -g_{-31} | 0 | 0 | g_{-25} | 0 | g_{-20} | g_{-19} | 0 | 0 | g_{-14} | 0 | -g_{-11} | 0 | 0 | 0 | 0 | 0 | -g_{-5} | g_{-2} | 0 | 0 | 0 | 0 | h_{4}+h_{3}+h_{1} | 0 | 0 | g_{1} | 0 | -g_{4} | 0 | 0 | g_{7} | 0 | 0 | -g_{9} | -g_{12} | g_{12} | 0 | -g_{12} | g_{12} | 0 | 0 | -g_{17} | 0 | 0 | g_{18} | 0 | 0 | 0 | 0 | 0 | g_{24} | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | -g_{29} | -g_{30} | 0 | 0 | 0 | 0 | -g_{32} | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 0, 0) | -e_{2}-e_{3} | g_{13} | g_{-33} | 0 | 0 | 0 | g_{-24} | 0 | 0 | g_{-18} | -g_{-16} | 0 | 0 | -g_{-11} | 0 | -g_{-10} | 0 | 0 | 0 | -g_{-5} | 0 | g_{-1} | 0 | 0 | 0 | h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | g_{2} | g_{3} | 0 | 0 | 0 | 0 | -g_{8} | -g_{9} | 0 | g_{13} | -g_{13} | -g_{13} | 0 | g_{13} | 0 | -g_{17} | 0 | 0 | 0 | g_{19} | 0 | 0 | 0 | 0 | g_{23} | g_{25} | 0 | 0 | 0 | 0 | g_{28} | 0 | -g_{29} | 0 | 0 | 0 | 0 | 0 | -g_{32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 |
(0, 1, 0, 1, 1, 0) | -e_{1}-e_{4} | g_{14} | -g_{-32} | 0 | 0 | -g_{-24} | 0 | -g_{-21} | 0 | 0 | 0 | 0 | -g_{-12} | 0 | 0 | -g_{-9} | g_{-7} | 0 | -g_{-6} | g_{-3} | 0 | 0 | 0 | 0 | h_{5}+h_{4}+h_{2} | 0 | 0 | 0 | g_{2} | 0 | -g_{5} | 0 | 0 | g_{8} | 0 | 0 | -g_{10} | 0 | 0 | -g_{14} | g_{14} | 0 | -g_{14} | g_{14} | 0 | 0 | -g_{19} | 0 | 0 | g_{20} | -g_{22} | 0 | g_{23} | 0 | 0 | g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{31} | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 0) | e_{1}-e_{4} | g_{15} | 0 | g_{-30} | g_{-27} | 0 | 0 | -g_{-20} | 0 | g_{-17} | 0 | 0 | 0 | 0 | 0 | -g_{-8} | 0 | -g_{-6} | 0 | g_{-2} | g_{-1} | 0 | 0 | h_{5}+h_{4}+h_{3} | 0 | 0 | 0 | 0 | g_{3} | -g_{5} | 0 | 0 | 0 | g_{9} | 0 | -g_{10} | 0 | 0 | g_{15} | g_{15} | -g_{15} | 0 | -g_{15} | g_{15} | -g_{18} | -g_{19} | 0 | 0 | 0 | g_{21} | 0 | g_{23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{29} | 0 | 0 | g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | -g_{35} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 1) | e_{2}-e_{5} | g_{16} | 0 | g_{-29} | 0 | -g_{-22} | 0 | -g_{-19} | g_{-17} | 0 | g_{-13} | 0 | 0 | 0 | g_{-7} | 0 | 0 | g_{-3} | g_{-2} | 0 | 0 | 0 | h_{6}+h_{5}+h_{4} | 0 | 0 | 0 | 0 | g_{4} | -g_{6} | 0 | 0 | 0 | g_{10} | 0 | -g_{11} | 0 | 0 | 0 | 0 | g_{16} | g_{16} | -g_{16} | 0 | -g_{16} | 0 | -g_{20} | -g_{21} | 0 | 0 | 0 | -g_{24} | 0 | 0 | 0 | 0 | 0 | -g_{28} | 0 | 0 | 0 | -g_{30} | 0 | g_{31} | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 0, 0) | -1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{17} | -g_{-31} | 0 | 0 | 0 | -g_{-21} | 0 | -g_{-16} | -g_{-15} | 0 | -g_{-11} | -g_{-10} | 0 | 0 | 0 | -g_{-5} | 0 | 0 | 0 | 0 | h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | 0 | g_{1} | g_{2} | 0 | 0 | 0 | g_{7} | -g_{8} | 0 | 0 | 0 | 0 | -g_{12} | -g_{13} | -g_{17} | -g_{17} | 0 | 0 | g_{17} | 0 | 0 | 0 | 0 | 0 | g_{22} | 0 | 0 | 0 | 0 | g_{26} | g_{27} | 0 | 0 | 0 | g_{29} | g_{30} | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 |
(1, 0, 1, 1, 1, 0) | 1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{18} | 0 | -g_{-28} | -g_{-25} | -g_{-20} | 0 | 0 | 0 | -g_{-13} | 0 | 0 | -g_{-8} | 0 | -g_{-6} | 0 | g_{-2} | 0 | 0 | 0 | h_{5}+h_{4}+h_{3}+h_{1} | 0 | 0 | g_{1} | 0 | 0 | -g_{5} | 0 | g_{7} | 0 | 0 | -g_{10} | 0 | g_{12} | 0 | 0 | 0 | -g_{15} | -g_{18} | g_{18} | 0 | 0 | -g_{18} | g_{18} | 0 | -g_{22} | 0 | 0 | 0 | g_{24} | 0 | g_{26} | 0 | 0 | 0 | 0 | g_{29} | 0 | 0 | 0 | 0 | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 0) | -e_{2}-e_{4} | g_{19} | g_{-30} | 0 | -g_{-24} | 0 | 0 | g_{-16} | 0 | -g_{-12} | 0 | 0 | 0 | -g_{-6} | 0 | g_{-4} | g_{-1} | 0 | 0 | h_{5}+h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | g_{2} | g_{3} | -g_{5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{13} | 0 | -g_{14} | -g_{15} | 0 | g_{19} | -g_{19} | -g_{19} | g_{19} | -g_{19} | g_{19} | -g_{22} | 0 | 0 | -g_{23} | 0 | g_{25} | 0 | 0 | 0 | 0 | 0 | g_{29} | 0 | 0 | 0 | -g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 0, 1, 1, 1) | -e_{1}-e_{5} | g_{20} | g_{-29} | 0 | 0 | g_{-18} | 0 | g_{-15} | -g_{-12} | 0 | -g_{-9} | g_{-7} | 0 | g_{-3} | 0 | 0 | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{2} | 0 | 0 | 0 | g_{2} | 0 | -g_{6} | 0 | 0 | g_{8} | 0 | 0 | -g_{11} | 0 | g_{14} | 0 | 0 | 0 | -g_{16} | 0 | 0 | -g_{20} | g_{20} | 0 | 0 | -g_{20} | 0 | 0 | -g_{25} | 0 | 0 | 0 | -g_{27} | 0 | g_{28} | 0 | 0 | g_{30} | 0 | 0 | -g_{31} | 0 | 0 | -g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 1) | e_{1}-e_{5} | g_{21} | 0 | -g_{-26} | -g_{-22} | 0 | g_{-17} | g_{-14} | 0 | 0 | -g_{-8} | 0 | 0 | g_{-2} | g_{-1} | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{3} | 0 | 0 | 0 | 0 | g_{3} | -g_{6} | 0 | 0 | 0 | g_{9} | 0 | -g_{11} | 0 | 0 | g_{15} | 0 | 0 | -g_{16} | 0 | 0 | g_{21} | g_{21} | -g_{21} | 0 | 0 | -g_{21} | -g_{24} | -g_{25} | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | -g_{31} | 0 | 0 | -g_{32} | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 0) | -1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{22} | -g_{-28} | 0 | g_{-21} | g_{-16} | 0 | 0 | 0 | g_{-9} | 0 | -g_{-6} | g_{-4} | 0 | 0 | 0 | h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | g_{1} | g_{2} | -g_{5} | 0 | 0 | g_{7} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{14} | 0 | g_{17} | 0 | 0 | -g_{18} | -g_{19} | -g_{22} | -g_{22} | 0 | g_{22} | -g_{22} | g_{22} | 0 | 0 | 0 | -g_{26} | 0 | g_{27} | 0 | 0 | -g_{29} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{33} | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 2, 1, 0) | -e_{3}-e_{4} | g_{23} | -g_{-27} | -g_{-24} | 0 | 0 | 0 | -g_{-11} | 0 | -g_{-7} | -g_{-6} | 0 | g_{-1} | 0 | 0 | h_{5}+2h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | g_{4} | 0 | 0 | 0 | -g_{8} | -g_{9} | -g_{10} | 0 | 0 | g_{13} | g_{14} | g_{15} | 0 | 0 | 0 | -g_{19} | 0 | 0 | 0 | g_{23} | 0 | 0 | -g_{23} | 0 | g_{23} | -g_{26} | 0 | 0 | 0 | 0 | g_{28} | g_{29} | 0 | 0 | 0 | g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 0, 1, 1, 1, 1) | 1/2e_{1}+1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{24} | 0 | g_{-23} | g_{-19} | g_{-14} | -g_{-13} | 0 | -g_{-8} | 0 | 0 | g_{-2} | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{3}+h_{1} | 0 | 0 | g_{1} | 0 | 0 | -g_{6} | 0 | g_{7} | 0 | 0 | 0 | -g_{11} | g_{12} | 0 | 0 | 0 | -g_{16} | g_{18} | 0 | 0 | 0 | 0 | -g_{21} | -g_{24} | g_{24} | 0 | 0 | 0 | -g_{24} | 0 | -g_{27} | 0 | 0 | 0 | 0 | 0 | g_{30} | 0 | 0 | 0 | 0 | g_{32} | -g_{33} | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 1) | -e_{2}-e_{5} | g_{25} | -g_{-26} | 0 | g_{-18} | 0 | -g_{-12} | -g_{-10} | 0 | 0 | g_{-4} | g_{-1} | 0 | h_{6}+h_{5}+h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | g_{2} | g_{3} | -g_{6} | 0 | 0 | 0 | 0 | 0 | -g_{11} | 0 | g_{13} | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | -g_{20} | -g_{21} | 0 | g_{25} | -g_{25} | -g_{25} | g_{25} | 0 | -g_{25} | -g_{27} | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | 0 | g_{31} | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 2, 1, 0) | -1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{26} | g_{-25} | g_{-21} | 0 | -g_{-11} | 0 | 0 | -g_{-6} | g_{-3} | 0 | 0 | h_{5}+2h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | g_{1} | g_{4} | 0 | 0 | 0 | -g_{8} | -g_{10} | 0 | 0 | -g_{12} | 0 | g_{14} | 0 | g_{17} | 0 | g_{18} | 0 | 0 | 0 | -g_{22} | 0 | 0 | -g_{23} | -g_{26} | 0 | g_{26} | -g_{26} | 0 | g_{26} | 0 | 0 | -g_{29} | 0 | 0 | g_{30} | 0 | 0 | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 1) | -1/2e_{1}-1/2e_{2}+1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{27} | g_{-23} | 0 | -g_{-15} | -g_{-10} | g_{-9} | 0 | g_{-4} | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | 0 | g_{1} | g_{2} | 0 | -g_{6} | 0 | g_{7} | 0 | 0 | -g_{11} | 0 | 0 | 0 | 0 | 0 | g_{17} | 0 | 0 | 0 | -g_{20} | g_{22} | 0 | 0 | 0 | -g_{24} | -g_{25} | -g_{27} | -g_{27} | 0 | g_{27} | 0 | -g_{27} | 0 | 0 | 0 | -g_{30} | 0 | 0 | 0 | 0 | -g_{32} | g_{33} | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 2, 1, 1) | -e_{3}-e_{5} | g_{28} | g_{-22} | g_{-18} | 0 | 0 | -g_{-7} | g_{-5} | g_{-1} | 0 | h_{6}+h_{5}+2h_{4}+h_{3}+h_{2} | 0 | 0 | g_{4} | 0 | -g_{6} | 0 | -g_{8} | -g_{9} | 0 | 0 | 0 | g_{13} | 0 | 0 | -g_{16} | 0 | 0 | 0 | g_{20} | g_{21} | 0 | g_{23} | 0 | -g_{25} | 0 | 0 | 0 | g_{28} | 0 | 0 | -g_{28} | g_{28} | -g_{28} | -g_{30} | 0 | 0 | 0 | -g_{31} | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 2, 2, 1, 0) | 1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}+1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{29} | -g_{-20} | -g_{-16} | -g_{-11} | 0 | -g_{-6} | 0 | 0 | h_{5}+2h_{4}+2h_{3}+h_{2}+h_{1} | 0 | 0 | g_{3} | 0 | 0 | -g_{7} | g_{9} | 0 | 0 | -g_{12} | -g_{13} | -g_{15} | 0 | g_{17} | 0 | g_{18} | g_{19} | 0 | 0 | -g_{22} | 0 | g_{23} | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | -g_{29} | 0 | 0 | g_{29} | 0 | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 2, 1, 1) | -1/2e_{1}+1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{30} | -g_{-19} | -g_{-15} | 0 | g_{-5} | g_{-3} | 0 | h_{6}+h_{5}+2h_{4}+h_{3}+h_{2}+h_{1} | 0 | g_{1} | g_{4} | -g_{6} | 0 | -g_{8} | 0 | 0 | 0 | -g_{12} | 0 | 0 | -g_{16} | g_{17} | 0 | 0 | 0 | g_{20} | 0 | 0 | 0 | g_{24} | 0 | g_{26} | 0 | -g_{27} | 0 | 0 | -g_{28} | -g_{30} | 0 | g_{30} | -g_{30} | g_{30} | -g_{30} | 0 | 0 | -g_{32} | 0 | -g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 2, 2, 1) | -e_{4}-e_{5} | g_{31} | g_{-17} | g_{-12} | -g_{-7} | g_{-1} | 0 | h_{6}+2h_{5}+2h_{4}+h_{3}+h_{2} | 0 | 0 | g_{5} | 0 | 0 | -g_{10} | 0 | -g_{11} | 0 | g_{14} | g_{15} | g_{16} | 0 | 0 | -g_{19} | -g_{20} | -g_{21} | 0 | 0 | g_{23} | g_{25} | 0 | 0 | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | g_{31} | 0 | 0 | 0 | -g_{31} | 0 | -g_{33} | 0 | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 2, 2, 1, 1) | 1/2e_{1}-1/2e_{2}-1/2e_{3}+1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{32} | g_{-14} | g_{-10} | g_{-5} | 0 | h_{6}+h_{5}+2h_{4}+2h_{3}+h_{2}+h_{1} | 0 | g_{3} | -g_{6} | -g_{7} | g_{9} | 0 | -g_{12} | -g_{13} | 0 | 0 | g_{17} | 0 | 0 | 0 | -g_{21} | 0 | 0 | 0 | g_{24} | g_{25} | 0 | 0 | -g_{27} | 0 | g_{28} | g_{29} | 0 | 0 | -g_{30} | 0 | 0 | 0 | 0 | -g_{32} | 0 | g_{32} | -g_{32} | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 2, 2, 1) | -1/2e_{1}+1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{33} | -g_{-13} | -g_{-9} | g_{-3} | h_{6}+2h_{5}+2h_{4}+h_{3}+h_{2}+h_{1} | 0 | g_{1} | g_{5} | 0 | 0 | -g_{10} | -g_{11} | 0 | g_{14} | 0 | g_{16} | 0 | g_{18} | 0 | -g_{20} | 0 | -g_{22} | 0 | -g_{24} | 0 | 0 | g_{26} | g_{27} | 0 | 0 | 0 | 0 | -g_{30} | 0 | 0 | 0 | -g_{31} | -g_{33} | 0 | g_{33} | 0 | -g_{33} | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 2, 2, 2, 1) | 1/2e_{1}-1/2e_{2}+1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{34} | g_{-8} | g_{-4} | h_{6}+2h_{5}+2h_{4}+2h_{3}+h_{2}+h_{1} | g_{3} | g_{5} | -g_{7} | 0 | -g_{11} | 0 | -g_{15} | 0 | g_{18} | g_{19} | 0 | g_{21} | -g_{22} | 0 | -g_{24} | -g_{25} | 0 | 0 | g_{27} | 0 | 0 | 0 | g_{29} | 0 | 0 | 0 | g_{31} | 0 | -g_{32} | 0 | -g_{33} | 0 | 0 | 0 | 0 | -g_{34} | g_{34} | -g_{34} | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 2, 3, 2, 1) | 1/2e_{1}+1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{35} | g_{-2} | h_{6}+2h_{5}+3h_{4}+2h_{3}+h_{2}+h_{1} | g_{4} | -g_{9} | g_{10} | g_{12} | -g_{15} | -g_{16} | g_{18} | 0 | g_{21} | 0 | g_{23} | -g_{24} | 0 | -g_{26} | 0 | 0 | -g_{28} | 0 | g_{29} | g_{30} | 0 | 0 | -g_{31} | 0 | -g_{32} | g_{33} | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | g_{35} | 0 | -g_{35} | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 2, 2, 3, 2, 1) | -1/2e_{1}-1/2e_{2}-1/2e_{3}-1/2e_{4}-1/2e_{5}+1/2e_{6}+1/2e_{7}-1/2e_{8} | g_{36} | h_{6}+2h_{5}+3h_{4}+2h_{3}+2h_{2}+h_{1} | g_{2} | g_{8} | -g_{13} | g_{14} | g_{17} | -g_{19} | -g_{20} | g_{22} | g_{23} | g_{25} | -g_{26} | 0 | -g_{27} | -g_{28} | 0 | g_{29} | g_{30} | 0 | -g_{31} | 0 | 0 | -g_{32} | g_{33} | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
We define the symmetric Cartan matrix (4/3, 1, 5/3, 2, 4/3, 2/3) | = | \(\displaystyle 2/3\varepsilon_{6}+2/3\varepsilon_{7}-2/3\varepsilon_{8}\) |
(1, 2, 2, 3, 2, 1) | = | \(\displaystyle -1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}\) |
(5/3, 2, 10/3, 4, 8/3, 4/3) | = | \(\displaystyle 1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+5/6\varepsilon_{6}+5/6\varepsilon_{7}-5/6\varepsilon_{8}\) |
(2, 3, 4, 6, 4, 2) | = | \(\displaystyle -\varepsilon_{3}-\varepsilon_{4}-\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}-\varepsilon_{8}\) |
(4/3, 2, 8/3, 4, 10/3, 5/3) | = | \(\displaystyle -\varepsilon_{4}-\varepsilon_{5}+2/3\varepsilon_{6}+2/3\varepsilon_{7}-2/3\varepsilon_{8}\) |
(2/3, 1, 4/3, 2, 5/3, 4/3) | = | \(\displaystyle -\varepsilon_{5}+1/3\varepsilon_{6}+1/3\varepsilon_{7}-1/3\varepsilon_{8}\) |